

Release Note

Release Date : March 2020

Product Ver. : Civil 2020 (v2.1)

DESIGI OF CIVIL STRUCTURES

Integrated Solution System for Bridge and Divil Engineering

Enhancements

- 1. Multiple stage post-tensioning in tendon
- 2. Auto division of the fiber section (Core and cover)
- 3. New option for Moving load optimization
- 4. Application rule change of Military Load Class
- 5. Improvement in calculation of torsional constant for closed composite section
- 6. Improvement of the element temperature calculation method for the composite section for C.S.
- 7. Improvement of the analysis speed for the inelastic time-history analysis
- 8. Improvement in GSD Civil pushover hinge export
- 9. Bridge Assessment to the UK standard: CS 454/19
- 10. RC Design to IS 456:2000 & Crack calculations by IS 3370(Part 2):2009

1. Multiple stage post-tensioning in tendon

• Re-tensioning of tendon is now supported. Immediate losses and time-dependent losses which occurred before re-tensioning are removed and recalculated based on the summation of multiple stage stressing applied to the tendon starting from the time of re-tensioning.

2. Auto division of the fiber section (core and cover)

- In earlier versions, the fiber section was to be manually divided into the core & cover regions and this was to be done for all such sections.
- Now, just the fiber hinge needs to be defined and the fiber division of the section can be done automatically, including differentiation for confined and un-confined concrete. Also, the fiber division can be equal size or auto size.

Properties > Inelastic Material > Fiber Division of Section

Civil 2020

3. New option for moving load optimization

- In earlier versions of midas, there was auto calculation to control the critical position of the analysis lanes in moving load optimization. Lane offset had to be provided manually.
- In this version, the limitation is removed as the number of analysis lanes can be specified by the user and this ensures that vehicle is placed at the extreme ends of the optimization lane.
- Load > Moving Load > Traffic Line Lanes > Moving Load Optimization Load > Moving Load > Traffic Surface Lanes > Moving Load Optimization Define Moving Load Optimization \times 9m Moving Load Optimization Х optimization lane Lane Name : (Optimization Barrier + Footpath + Margin Lane width) Traffic Lane Optimization Properties optimization lane Lane Name : Traffic Lane Optimization Properties . a 0 Start End 1 -a a : Eccentricity End Start Barrier + Footpath + Margin a : Eccentricity 9 Optimization Lane Lane Width 3 9 Optimization Lane Conorato Analysis La Number of 3 Lane Width Lanes(2^N+1) N: 2 1.5 Anal. Lane Offset Offset from 1 Centerline Wheel Spacing 2 2 Wheel Spacing 0 Margin 0 0 Margin Eccentricity -5.1 Eccentricity Straddling Lane Type Straddling Lane Type Vehicular Load Distribution CL of carriageway Vehicular Load Distribution Lane Element Cross Beam CL of carriageway Lane Element Cross Beam CL of Lane Cross Beam Group CL of Lane Cross Beam Group 1.5m 1.5m 1.5m 1.5m 1.75m 1.75m 1.75m 1.75m Skew 2mSkew * End 0 ‡ [dea] Start 0 2m Moving Direction Moving Direction Both ○ Forward ○ Backward 9m 9m OForward OBackward Both Civil 2020 v2.1 Previous version

Civil 2020

4. Application rule change of Military Load Class

- In earlier version, to obtain the most unfavorable condition for the structure, even the partial vehicle load was considered.
- Now, only complete vehicle would be considered to obtain the worst effect on the structure.

5. Improvement in calculation of torsional constant for closed composite section

- The torsional constant calculation has been improved for composite section which has open cross-section before composite and closed cross-section after composite, e.g. Super T girder.
- Now, the torsional constant is calculated according to finite element based analysis thus calculating for both before composite and after composite separately.

Properties > Section Properties > Composite

	Section Properties X			Section Properties				
		Value(Before)	Value(After)	Unit		Value(Before)	Value(After)	Unit
	Area	5.361715e-001	1.230545e+000	m^2	Area	5.361715e-001	1.230545e+000	m^2
	Asy	4.831434e-001	4.645265e-001	m^2	Asv	1.237778e-001	7.374340e-001	m^2
	Δ <u>87</u>	6 130852e-001	5 972085e-001	m^2	Asz	2.125628e-001	2.803497e-001	m^2
	lxx	7.834168e-003	1.506723e-002	m^4	lxx	6.700396e-003	1.916471e-001	m^4
	lw	1.011163e-001	2.928666e-001	m^4	lw.	1.011163e-001	2.928666e-001	m^4
	Izz	1.123795e-001	6.331598e-001	m^4	Izz	1,123795e-001	6.331598e-001	m^4
	Сур	1.050000e+000	1.050000e+000	m	Cvp	1.050000e+000	1.050000e+000	m
	Cym	1.050000e+000	1.050000e+000	m	Cym	1.050000e+000	1.050000e+000	m
Dort I	Czp	6.635581e-001	2.185895e-001	m	Czp	6.635581e-001	2.185895e-001	m
Part 1	Czm	5.514419e-001	9.964105e-001	m	Czm	5.514419e-001	9.964105e-001	m
	Qyb	0.000000e+000	0.000000e+000	m^2	Qvb	0.000000e+000	0.000000e+000	m^2
	Qzb	0.000000e+000	0.000000e+000	m^2	Qzb	0.000000e+000	0.000000e+000	m^2
	Peri:O	7.967478e+000	1.446748e+001	m	Peri:O	7.967478e+000	1.446748e+001	m
	Peri:I	0.000000e+000	0.000000e+000	m	Peri:I	0.000000e+000	0.000000e+000	m
H STR	Center:y	1.050000e+000	1.500000e+000	m	Center:v	1.050000e+000	1.500000e+000	m
	Center:z	5.514419e-001	9.964105e-001	m	Center:z	5.514419e-001	9.964105e-001	m
	y1	-1.050000e+000	-1.050000e+000	m	v1	-1.050000e+000	-1.050000e+000	m
	z1	6.635581e-001	2.185895e-001	m	z1	6.635581e-001	2.185895e-001	m
	y2	1.050000e+000	1.050000e+000	m	v2	1.050000e+000	1.050000e+000	m
	z2	6.635581e-001	2.185895e-001	m	72	6.635581e-001	2.185895e-001	m
	y3	4.070000e-001	4.070000e-001	m	v3	4.070000e-001	4.070000e-001	m
	z 3	-5.514419e-001	-9.964105e-001	m	z3	-5.514419e-001	-9.964105e-001	m
	y4	-4.070000e-001	-4.070000e-001	m	v4	-4.070000e-001	-4.070000e-001	m
	z4	-5.514419e-001	-9.964105e-001	m	z4	-5.514419e-001	-9.964105e-001	m
				Close				Close
Part I + Part II	(Previous v	ersion			Civil 202	0 v2.1	

6. Improvement of the element temperature calculation method for the composite section for C.S.

- In earlier version, uniform temperature loads like system temperature, nodal temperature and element temperature were applied to transformed properties of composite beam elements.
- In new version, these loads are applied individually to each part based on temperature coefficient to predict more realistic behavior of structure, when composite section for construction stage are defined.

Civil 2020

7. Improvement in analysis speed for inelastic time history analysis

• The output for non-linear elastic time history analysis with fiber modelling could now be restricted to required elements or links. This drastically reduces the overall analysis time of the model.

8. Improvement in GSD Pushover Hinge Export

- In earlier version, the yield moment was taken from the PMM interaction curve generated for the design instead of idealized curve in the Moment-Curvature curve.
- In this version, the yield moments depending on axial forces are taken from the idealized curve in the moment-curvature curve when exporting hinge data for pushover analysis.
- Pushover > Hinge Properties > Define Pushover Hinge Type/Properties Section View : Cvl_Column Interaction Curve Moment-Curvature Curve | Stress Contour P-M My-Mz 3D Mode Code : Eurocode2:04 Angle : 0 OP-My O P-Mz O Load Combination : V Dea. Ноор Туре Checking Ratio Tie Keep M/P constant Keep P constant Keep M constant Curvature Moment Moment Curvature Curve State *10^-3 (1/m (kN×m) Axial load = 9117.41 D a.Crack 1.046420 2540.213 Neutral Axis Angle = 0 (kN) 2500 b.Yield(Init.) 4.991872 5108.490 24908.970 1 7000 N.A=0.00Dbg 7.474051 5658.068 c.Yield 2 18768.158 €500 d.Ultimate(conc) 43.595 4855.292 3 17834.453 6000f C e.Ultimate(rebar) 4 16838.642 5 15794.918 f.Yield(ideal) 5.485665 5613.820 5500 6 14720.885 5000 7 ħ 13621.335 152 Strain 4500 8 12492.856 9 11357.819 4000 Strain Diagram 10 10227.107 £ C. 3500 11 9117.409 12 8081.230 3000 13 7329.061 2500-14 6593.286 2000 15 5639.075 16 4577.785 1500-17 3493.591 1000 18 2354.494 500 19 1170.870 R:0 20 7.722 75 80 85 90 95 105 21 10 15 20 25 20 25 40 45 50 55 60 65 70 -1225.595 22 -2540.706 Point Number 0 Curvature*0.001(1/m) 23 -3900.146 -7500 Concrete Strain 0 Cracked Moment of Inertia (Icrack) = 0.0373679 m⁴ 8 24 -5438.150 Rebar Strain : 0 25 -6146.546 a : Crack starts d : Concrete Strain reaches the ultimate strain Neutral Axis Depth : 0 m b : Concrete or tensile steel yields e : Tensile steel Strain reaches the ultimate strain c : Both concrete and tensile steel yield f : Yield in Idealized Model Export Report Close Previous version Civil 2020 v2.1

9. Bridge Assessment to the UK standard: CS 454/19

- Level 1 assessment can be performed now for PSC Box & PSC Composite sections in midas Civil. All model 2 vehicle is also introduced in accordance to CS 454 Assessment code.
- Assessment load combinations can be defined to obtain output for strength & service limit states.

rhdrid hane 199 Haesenth hadrid Lodo Pitane hadrid Lodo Pitane 100 J J J J J J J J J J J J J J J J J J	Standard Vehicular Load X			The second secon					
464 Adessment	idard Name			EFE					
hadr Lad Name : AL MODE 2(DA +HE) hadr Lad Name : AL MODE 2(DA +HE) hadr Lad Name : AL MODE 2(DA +HE) UDU	454 Assessment V								
Nackar Lood Type: ALL MODEL 2(L0L +HEL) Nackar Lood Type: ALL MODEL 2(L0L +HEL) UUL KEL UUL KEL UVL	cular Load Properties								
holdr Load Type : ALL MODEL 2UDL H7EL) ▼ UDL ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	icular Load Name : ALL MODEL 2(UDL +KEL)								
$\frac{1}{10000}$	Icular Load Type : ALL MODEL 2(UDL+KEL)								
condition Feator(Fc) 1 condition Feator(Fc) 1 value of Gamma_m(Utimate limit States) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate limit States) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate limit States) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate limit States) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate limit States) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate limit States) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate limit State) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate limit State) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate limit State) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate limit State) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate Limit State) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate Limit State) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate Limit State) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m(Utimate Limit State) Image: State Load Cases and Feators(Gamma_B) value of Gamma_m		Assessment Parameter X	Define Assessment Case						
e Factor Control of Pactor (V) I cs 454 User defined Iane Factor Image: Strength Sts.2 Sts		Condition Factor(Fa)	Load Combination				Static	Load Cases and Factors(Gamma_fi)
$c = factor CS 454 User defined c = 0 = max_{activistic Strength} O = 0 = max_{activistic Strength} O = 0 = max_{activistic Strength} S = S = S = S = S = S = S = S = S = S =$			Name	Limit State	e Comb. Type	Gamma f3 🛆		Static Load Cases	Factor
$\frac{1}{100 \text{ c} - \text{defined}} = \frac{1}{100 \text{ c} - \text{defined}} $	e Factor	Value of Gamma_m(Ultimate limit States)	SLS-1	SLS	Comb1	1	Þ	D(ST)	1.0000
User defined Lane Factor Image: Construction of the construction	CS 454		SLS-2	SLS	Comb2	1		SDL(ST)	1.2000
	User-defined Lane Factor ···	Worst Credible Strength	SLS-3	SLS	Comb3	1		L(ST)	1.0000
$\frac{1}{2 \text{ ded length, } L(m)}{2 \text{ down}} \frac{230}{L^{6.67}} \text{ 82}$ $m \leq L \leq 40m \frac{336}{L^{6.67}} \frac{1}{192 - 0.023L} \frac{120}{1.92 - 0.023L}$ $m \leq L \leq 50m \frac{336}{L^{6.67}} \frac{120}{120}$ $\geq 50m \frac{36}{L^{6.67}} \frac{120}{120}$ $\Rightarrow 50m \frac{14}{L^{6.67}} \frac{120}{L^{6.67}} \frac$			SLS-4	SLS	Comb4	1	*		
$ \leq 20m \qquad \frac{230}{L^{0.67}} \qquad 82 \\ m \leq L \leq 40m \qquad \frac{336}{L^{0.67}} \frac{1}{1.92 - 0.023L} \qquad \frac{120}{1.92 - 0.023L} \\ m \leq L \leq 50m \qquad \frac{36}{L^{0.67}} \qquad 120 \\ \Rightarrow 50m \qquad \frac{36}{L^{0.4}} \qquad 120 \\ agory for K-Factor \\ affic/Surface Category : \qquad \frac{Hp}{40t} \qquad \frac{1}{\sqrt{t}} \\ betal Report \\ \hline Ultimate Limit State \\ \hline Detail Report \\ \hline Ultimate Limit State \\ \hline Stressbillty Limit State \\ \hline Stressbillty Limit State \\ \hline Stressbillty Limit State \\ \hline Detail Report \\ \hline Ultimate Limit State \\ \hline Stressbillty Limit State \\ \hline Stressbi$	aded length, L(m) UDL (kN/m) KEL (kN)	Multiplacia Deservices	ULS-1	ULS	Comb1	1.1			
$\frac{1}{L^{667}} = \frac{120}{1.92 - 0.023L} = \frac{120}{1.92 - 0.023L}$ $\frac{336}{L^{667}} = \frac{120}{1.92 - 0.023L} = \frac{120}{1.92 - 0.023L}$ $\frac{336}{L^{667}} = \frac{120}{1.92 - 0.023L} = \frac{120}{1.92 - 0.023L}$ $\frac{336}{L^{667}} = \frac{120}{1.92 - 0.023L} = \frac{120}{1.92 - 0.02} = \frac{120}{1.9$	<u></u>	Modity Design Parameters	ULS-2	ULS	Comb3	1.1			
$m < L < 40m \frac{336}{L^{0.67}} \cdot \frac{1}{1.92 - 0.023L} \frac{120}{1.92 - 0.023L}$ $m \leq L \leq 50m \frac{336}{L^{0.67}} 120$ $> 50m \frac{36}{L^{0.1}} 120$ $serviceability Limit State$ $\bigcirc Stress/Crack$ $Detal Report$ $\bigcirc Utimate Limit State$ $\bigcirc Stress/Crack$ $Detal Report$ $\bigcirc Utimate Limit State$ $\bigcirc Stress/Crack$ $\boxed Copy Assessment Load Combination$ $\boxed Serviceability Limit State$ $\bigcirc Stress/Crack$ $\boxed S$	≤ 20111 L ^{0.67} 82	Strength Limit State	ULS-4	ULS	Comb4	1.1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m < L < 40m 336 1 120		*						
$m \leq L \leq 50m \frac{336}{L^{0.57}} \qquad 120$ $\geq 50m \frac{36}{L^{0.1}} \qquad 120$ $serviceability Limit State \\ \odot Stress/Crack$ $Detal Report \\ \odot Ultimate Limit State \\ \odot Serviceability Limit State$	$III < L < 40III$ $L^{0.67}$ $1.92 - 0.023 L$ $1.92 - 0.023 L$								
III ≤ L ≤ 50III L ^{0.67} I20 > 50m $\frac{36}{L^{0.1}}$ 120 Lagory for K-Factor Serviceability Limit State affic/Surface Category : Hp 40t V Detail Report Serviceability Limit State Serviceability Limit State Copy Assessment Load Combination Serviceability Limit State Serviceability Limit State	m < L < 50m336120	∑ Shear							
> 50m 36 L ^{0.1} 120 tagory for K-Factor affic/Surface Category : Hp v 40t v > 60 > Serviceability Limit State > 0ctal Report > Utimate Limit State > Utimate Limit State > Serviceability Limit State > Serviceability Limit State <	$m \le L \le 50m$ $L^{0.67}$ 120	✓ Torsion							
> Still L ^{0.1} 120 tagory for K-Factor affic/Surface Category : Hp 40t ○ Ultimate Limit State Serviceability Limit State Serviceability Limit State Copy into General Load Combination Special Vehicle Image: Serviceability Limit State	36 120	Serviceability Limit State							
tagory for K-Factor affic/Surface Category : 40t Detail Report Ultimate Limit State Serviceability Limit State Serviceability Limit State Copy Assessment Load Combination Moving Load Cases and Factors(Gamma_fi) Serviceability Limit State Copy into General Load Combination Special Vehicle Anticol Special Vehicle O	2 5011 L ^{0.1} 120	Stress/Crark							
Affic/Surface Category: Hp Image: Category: Detail Report Image: Category: Moving Load Cases and Factors(Gamma_fit) Moving Load Level: Image: Copy Assessment Load Combination	tagory for K-Factor								
40t Image: Copy Assessment Load Combination Image: Copy Assessment Load Combination Image: Copy Assessment Load Combination Image: Copy Into General Load Combination Image: Copy Into General Load Combination Image: Copy Into General Load Combination	affic/Surface Category : Hp 🗸	Detail Report				~			
Serviceability Limit State Copy Assessment Load Combination Standard Vehicle HA(MV) 1.2 Copy into General Load Combination Special Vehicle Special Vehicle 0	ad level 40t ×	Ultimate Limit State	<				Movin	g Load Cases and Factors(Gamma_	fl)
Copy into General Load Combination Special Vehicle 0	odd Eever i	Serviceability Limit State		Copy Ass	essment Load Combi	nation	⊡ St	andard Vehicle HA(MV)	~ 1.2
				Convinte	General Load Combi	nation	Sp	ecial Vehicle	~ 0
OK Cancel				Copyinto	Concrar Lodad Combi				

9. Bridge Assessment to the UK standard: CS 454/19

- · Assessment results could be viewed in tabular format in midas Civil itself and these can be exported to excel file as well.
- Summary as well as detailed report is provided for Flexural, Shear, Torsion & Service limit state for Class 1 and 2 category.

10. RC Design to IS 456:2000 & Crack calculations by IS 3370(Part 2):2009

- Reinforced Concrete Design as per IS 456: 2000 is now available in midas civil, where we can perform Beam Design, Beam Checking, Column Design, Column Checking
- We can generate Graphic/Detailed reports which include both Ultimate Limit State and Serviceability Limit State checks as per IS 456:2000. Also, Crack Width Checks as per IS 3370 (Part-2) :2009 can be obtained for Beams.

Design > RC Design > IS456:2000	(B)	MIDAS/Text Editor - (1_Model_)5456.RCDesign.rcs) File Edit View Window Help
		☞◼▰◙◨▤◞◾▣▤◼◾▰
	Preview Window Out	(). Compute moment magnification factors for major axis(DBy,DSy). . Cmy = 0.85 (Default or User defined value)
	No:10 V 🎒 Print 🎒 Print All 🖫 Close 🖬 Save	-, DBy < 1.0> DBy = 1.00 (Default value) 0
	Section Property : Beam (No : 1) 0017 0019	 Compute minimum eccentric moments(Mmin). . Emin = MAX[IAX[Ix]/500 + Dmax/30, 20] = 0.028 m. . Mmin_y = Pu⁺ Emin = 9.57 kN-m.
	2. Section Diagram). Compute magnified moments.
		。 In per per set view Window Help · Dee D AS D AS D THE VIEW BEING AND
Concrete Design Code		00066 *.MEXHSR : Member Type = BEAM, MEMB = 10 00066 *.MEXHSR : Member Type = BEAM, MEMB = 10
		⁹ 00067 *.DESCRIPTION OF BEAM DATA (1SEC = 1) : Beam 00068 Section Type : Rectangle (RECT) 00069 Beam Length (Span) = 6.000 m.
Design Code : IS456:2000		00070 Section Depth (Hc) = 0.500 m. 00071 Section Width (Hc) = 0.300 m
Apply Special Provisions for Seismic Design		00072 Concrete Strength (fck) = 30000.000 KPa.
Moment Redistribution Factor for Beam :	TOP2: TOP2: TOP2: 0019 BOT1::PP20, BOT1::PP20, BOT1::PP20, 00197	7 00074 Stirrups Strength (fyw) = 415000.000 KPa. 00075 Modulus of Flatinity (Fr) = 20000000 RDa
✓ Torsion Design	BOTT: BOTT: BOTT: BOTT: BOTT:	00076 00077 *.FORCES AND MOMENTS AT CHECK POINT <i> :</i>
IS 3370(Part 2):2009 Crack Width Check		00078 Positive Bending Moment P-M_Ed = 30.82 kN-m., LCB = 2 00079 Negative Bending Moment N-M_Ed = 164.99 kN-m., LCB = 1
	No:4 🗸 🖨 Print 🖨 Print All 🖅 Close 🖬 Save	00080 Shear Force V_Ed = 85.03 kN., LCB = 1 00081 Torsion T = 2.84 kN-m., LCB = 11
Crack Width due to Temperature & Moisture - Annex A	3. Bending I	00082 00083 * REINFORCEMENT RATTERN -
- Estimated Shrinkage Strain 0.0025	Negative Mon 1. Design Condition	00084
Estimated Total Thermal Contraction after	(-) Load Com Design Code IS456:2000	00000 LOCATION 1 GL(m.) Repar Asi(m.2.)
	Factored Stree Unit System kN, m	00088 Bottom 1 0.040 2-220 0.00063
- T1 (C) Fall in Temperature between the	Check Ratio Member Number 4	00089
	Material Data fok = 40000, fy = 415000, fyw = 415000 KPa	00091
Crack Width in Mature Concrete - Anney R	Column Height 4 m	00093 [[[*]]] ANALYZE SHEAR AND TORSION CAPACITY.
Limiting Design Surface Crack Width(mm) 0.2	Section Property Column (No: 2) Rebar Pattern Layer 1 Layer 2 6-P32 10-P32 - - - - - - - - -	00096 00096 (). Compute design parameters. 00097 alphal = 0.642857 00098 betal = 0.8400
	Total Rebar Area Ast = 0.0514688 m^2 (Rhost = 0.2145)	00099 Gamma_m = 1.50 (for concrete). 00100 fcd = fck / Gamma_m = 20000.000 KPa.
OK Close	2 Applied Leade	00101 Gamma_s = 1.15 (for Fundamental). 00102 fyd = fyk / Gamma_s = 360869.565 KPa.
	2. Applied Loads	00103 00104 (). Check area of tensile reinforcement (Bectangular-beam).
	N_Ed = 341.642 kN, M_Edy = 126.847, M_Edz = 9.56598, M Ed = 127.207 kN-m	00106 fyk = 415000.0000 KPa.
de ontions for IS 456.2000 & IS 3370(Part 2).2009		$\begin{array}{c} 0.0030 \\ 0.00107 \\ est = fy/1.15Es + 0.002 = 0.0038 \\ 0.0020 \\ 0.0030 \\ 0.$
	3. Axial Forces and Moments Capacity Check	00109 As.maxl = (TCK*BC/Ty)*(betal*ecu*d/(est+ecu)) = 0.0040 m^2. 00109 As.max2 = 0.04 * (BC*Hc) = 0.0060 m^2.
	Concentric Max. Axial Load N_Rdmax = 17327.4 kN	00110 As.max = min[As.max1, As.max2] = 0.0040 m^2. 00111 As.min = 0.85*bt*d/fy = 0.0003 m^2.
	Axial Load Ratio N_Ed/N_Rd = 341.642 / 1074.14 = 0.318 < 1.000 O.K	00112 As.prov = 0.0006 m^2. 00113 As.min < As.prov < As.max> 0.K !
	Moment Katio M_Edy/M_Rdy = 126.847 / 398.879 = 0.318 < 1.000 O.K	00114
	M_Ed/M_Rd = 127.207 / 399.945 = 0.318 < 1.000 OK	Ready In 200 / 202 Col 57
		Lin 2007 592, C0157